

INCORPORATING STEMPIIOT CURRICULUM AND FLIGHT SIMULATOR ACTIVITIES IN MATH LESSONS AND IN AEROSPACE-THEMED CLASSES

Notes:

- 1. Before doing math or science lessons with flight simulators, first fly Missions 1 through 3 to give students a basic concept of flight
- 2. The following math and science lessons are just a sampling of those that are possible; teachers can develop many more lessons on additional topics

Math Lesson	Complementary Flight Simulator Activity	Sample of Common Core Math Standards Met by Activity
Measurement (inquiry lesson)	<u>Opening</u> : Look at the airplane's instrument panel – what do you see? <u>Learning Target</u> : I can fly the flight simulator profile and measure several variables. <u>Main activity</u> : Students discuss what they think they can measure and what the	5.MD.A.1 5.MD.B.2
	units will be; students fly the flight simulator while non-flying group members	HSN-Q.A.1
	measure different variables of their choice; students explain now they are measuring and what the variables mean; students present their results to the class and discuss them; (consider optional follow on lesson on units of measure).	HSN-Q.A.2 HSN-Q.A.3
Rate of change (inquiry lesson)	Opening: What are some rates of change that occur as an airplane flies? Learning Target: I can fly the flight simulator profile and measure several rates of change. <u>Main activity</u> : Students discuss what they think they can measure and what the units will be; students fly the flight simulator while non-flying group members measure different variables of their choice while also measuring the time: students	8.EE.B.5 8.EE.B.6 8.F.B.4 8.F.B.5
	explain how they are measuring and what the variables mean; students calculate the rates of change they measured; students present their results to the class and discuss them.	
Arithmetic series	<u>Opening</u> : If an airplane is traveling at a constant speed of 120 MPH, how far would it go in 1 hour? 2 hours? How do we know this? <u>Learning Target</u> : I can fly the flight simulator profile and see how a constant rate results in an arithmetic series.	HSA-SSE.A.1 HSA-SSE.A.1a HSA-SSE.A.1b
	<u>Main activity</u> : Students discuss rate and constant rate; students take off in the flight simulator, climb to altitude, then set up a constant speed cruise and measure the distance (use DME or map feature) at equal time intervals; students record the data	

Using Edustation Flight Simulators in Math Lessons:

Engaging Students In STEM With Flight Simulation

	and note how the series is arithmetic; students write a recursive rule for the series	
	and discuss now this could be useful.	
Geometric series	Opening: If an airplane is taking off, what happens to its speed?	HSA-SSE.A.1
	Learning Target: I can fly the flight simulator profile and see how acceleration	HSA-SSE.A.1a
	relates to a geometric series.	HSA-SSE.A.1b
	Main activity: Students discuss rate and changing rate; students perform a take off	HSA-SSE.B.4
	in the flight simulator, noting the airspeed at equal time intervals from brake release	
	to liftoff: students record the data and note how the series is geometric: students	
	write a recursive rule for the series and discuss how this could be useful.	
Linear functions	Opening: What airplane performance variables might show linearity?	8.F.B.4
(inquiry lesson)	Learning Target: I can fly the flight simulator profile and measure many variables on	8.F.B.5
	an airplane and determine if they are linear.	
	Main activity: Students discuss what they think they can measure and which might	HSA-CED.A.1
	be linear; students fly the flight simulator while non-flying group members measure	HSA-CED.A.2
	different variables of their choice; students explain how they are measuring and	HSA-CED.A.3
	what the variables mean: students check to see if the variables demonstrate	HSA-CED.A.4
	linearity by graphing them: students find a function to represent any linear	
	relationships: students present their results to the class and discuss them.	
Slope	Opening: What airplane performance variable might relate to slope?	HSA-CED.A.1
0.000	Learning Target: I can fly the flight simulator profile and measure climb rate to	HSA-CED A 2
	determine slope	HSA-CED A 3
	Main activity. Students discuss the concept of slope of a linear function: students	HSA-CED A 4
	discuss how climb rate would show slope: students determine what to measure on	
	a climb to figure the slope (altitude vs. time); students take off and measure the	
	a climb to figure the slope (allitude vs. time), students take on and measure the	
	all plates allitude as a function of time on a graph and measure the clone, then	
	piot the attitude as a function of time on a graph and measure the slope, then	
	compare the calculation to the vertical speed; students discuss the results.	
Data analysis –	<u>Opening</u> : You are in a flight test organization, and you are tasked with determining	HSF-BF.A.1
best fit	a new airplane's climb rate – how will you measure it?	HSF-BF.A.1a
	Learning Target: I can fly the flight simulator profile and determine climb rate from	
	data I get using best fit.	
	Main activity: Students discuss the concept of linearity and best fit; students	
	discuss how they would measure climb rate using several trials, understanding that	
	each trial will give slightly different data due to human factors (different flying	
	technique on each climb); students fly several climb profiles as closely the same as	
	possible—same aircraft and conditions, same airspeed, same climb profile;	

Engaging Students In STEM With Flight Simulation

	students plot each climb's data points (altitude vs. time); students note how the data is a scatter plot showing linearity; students use graphing calculators and their eyes	
	to plot best fit of the data; students discuss the results.	
Statistics – mean,	Opening: Look at the previous lesson on best fit – could we use the data to find one	HSS-ID.A.1
median, mode	climb rate?	HSS-ID.A.2
	Learning Target: I can fly the flight simulator profile and get data to calculate mean,	HSS-ID.A.3
	median and mode.	HSS-ID.A.4
	Main activity: Students discuss the previous lesson where they performed several	
	climbs and plotted the data from each to find the best fit; the students use the data	
	to calculate the climb rate of each climb; the students discuss central tendency,	
	then how they can calculate mean, median, and mode for the climb rate; students	
	calculate mean, median, and mode, then compare the results to the best fit line.	
Trigonometry –	Opening: You are a 747 airline captain flying to JFK airport from London—you are	HS-SRT.C.6
calculating a	cruising at 39,000 feet—at what distance from JFK do you need to start to descend	HS-SRT.C.7
descent gradient	for a comfortable/normal descent?	HS-SRT.C.8
	Learning Target: I can fly the flight simulator profile and use trigonometric	
	relationships to calculate a descent gradient.	
	Main activity: Students review trigonometric relationships; students think about the	
	descent problem; students plot the airplane on a graph, 39,000 feet up and an	
	unknown distance from JFK—a comfortable descent is at 3 degrees nose down;	
	students use tangent to calculate the distance from the airport to start descent;	
	students fly the profile in the simulator to test it; students experiment with higher	
	and lower angles (calculating distance, then measuring it) to see how they work;	
	students discuss the results.	
Law of cosines	Opening: How does a crosswind affect an airplane's route of flight?	HS-SRT.D.10
	Learning Larget: I can calculate the effect of a crosswind using the law of cosines.	HS-SRT.D.11
	Main activity: Students discuss how a crosswind would affect an airplane's route of	
	Tight; students understand that a 90 degree crosswind makes a right triangle so the	
	Pythagorean Theorem could be used to find the resultant route; students learn the	
	law of cosines, then calculate the route with information given; students test their	
	calculation by flying the same route with the same crosswind; students compare the	
	flight results with the calculations.	