

INCORPORATING THE EDUSTATION FLIGHT SIMULATOR ACTIVITIES IN MATH AND SCIENCE LESSONS AND IN AEROSPACE-THEMED CLASSES

Notes:

1. Before doing math or science lessons with flight simulators, first fly aerospace lessons **1** through 6 to give students a basic concept of flight.

2. The following math and science lessons are just some of those that are possible to do—teachers could develop many more lessons on many different topics.

Using	Edustation	Flight	Simulators	in	Math	Lessons:
USING	Luustation	1 IIgnu	Simulators	111	maun	LC330II3.

Math Lesson	Complementary Flight Simulator Activity	Sample of Common Core Math
		Standards Met by Activity
Measurement	<u>Opening</u> : Look at the airplane's instrument panel – what do you see?	5.MD.A.1
(inquiry lesson)	<u>Learning Target</u> : I can fly the flight simulator profile and measure several	5.MD.B.2
	variables.	
	<u>Main activity</u> : Students discuss what they think they can measure and	HSN-Q.A.1
	what the units will be; students fly the flight simulator while non-flying	HSN-Q.A.2
	group members measure different variables of their choice; students	HSN-Q.A.3
	explain how they are measuring and what the variables mean; students	
	present their results to the class and discuss them; (consider optional	
	follow on lesson on units of measure).	
Rate of change	<u>Opening</u> : What are some rates of change that occur as an airplane flies?	8.EE.B.5
(inquiry lesson)	<u>Learning Target</u> : I can fly the flight simulator profile and measure several	8.EE.B.6
	rates of change.	8.F.B.4
	<u>Main activity</u> : Students discuss what they think they can measure and	8.F.B.5
	what the units will be; students fly the flight simulator while non-flying	
	group members measure different variables of their choice while also	
	measuring the time; students explain how they are measuring and what	
	the variables mean; students calculate the rates of change they measured;	
	students present their results to the class and discuss them.	
Arithmetic series	<u>Opening</u> : If an airplane is traveling at a constant speed of 120 MPH, how	HSA-SSE.A.1
	far would it go in 1 hour? 2 hours? How do we know this?	HSA-SSE.A.1a
		HSA-SSE.A.1b

	Learning Target: I can fly the flight simulator profile and see how a	
	constant rate results in an arithmetic series.	
	<u>Main activity</u> : Students discuss rate and constant rate; students take off in	
	the flight simulator, climb to altitude, then set up a constant speed cruise	
	and measure the distance (use DME or map feature) at equal time	
	intervals; students record the data and note how the series is arithmetic;	
	students write a recursive rule for the series and discuss how this could	
	be useful.	
Geometric series	<u>Opening</u> : If an airplane is taking off, what happens to its speed?	HSA-SSE.A.1
	Learning Target: I can fly the flight simulator profile and see how	HSA-SSE.A.1a
	acceleration relates to a geometric series.	HSA-SSE.A.1b
	<u>Main activity</u> : Students discuss rate and changing rate; students perform	HSA-SSE.B.4
	a take off in the flight simulator, noting the airspeed at equal time	
	intervals from brake release to liftoff; students record the data and note	
	how the series is geometric; students write a recursive rule for the series	
	and discuss how this could be useful.	
Linear functions	<u>Opening</u> : What airplane performance variables might show linearity?	8.F.B.4
(inquiry lesson)	Learning Target: I can fly the flight simulator profile and measure many	8.F.B.5
	variables on an airplane and determine if they are linear.	
	<u>Main activity</u> : Students discuss what they think they can measure and	HSA-CED.A.1
	which might be linear; students fly the flight simulator while non-flying	HSA-CED.A.2
	group members measure different variables of their choice; students	HSA-CED.A.3
	explain how they are measuring and what the variables mean; students	HSA-CED.A.4
	check to see if the variables demonstrate linearity by graphing them;	
	students find a function to represent any linear relationships; students	
	present their results to the class and discuss them.	
Slope	<u>Opening</u> : What airplane performance variable might relate to slope?	HSA-CED.A.1
	Learning Target: I can fly the flight simulator profile and measure climb	HSA-CED.A.2
	rate to determine slope.	HSA-CED.A.3
	<u>Main activity</u> : Students discuss the concept of slope of a linear function;	HSA-CED.A.4
	students discuss how climb rate would show slope; students determine	
	what to measure on a climb to figure the slope (altitude vs. time); students	
	take off and measure the airplane's altitude at set intervals while also	

	recording the vertical speed; students plot the altitude as a function of	
	time on a graph and measure the slope, then compare the calculation to	
	the vertical speed; students discuss the results.	
Data analysis –	<u>Opening</u> : You are in a flight test organization, and you are tasked with	HSF-BF.A.1
best fit	determining a new airplane's climb rate – how will you measure it?	HSF-BF.A.1a
	<u>Learning Target</u> : I can fly the flight simulator profile and determine climb	
	rate from data I get using best fit.	
	Main activity: Students discuss the concept of linearity and best fit;	
	students discuss how they would measure climb rate using several trials,	
	understanding that each trial will give slightly different data due to human	
	factors (different flying technique on each climb); students fly several	
	climb profiles as closely the same as possible—same aircraft and	
	conditions, same airspeed, same climb profile; students plot each climb's	
	data points (altitude vs. time); students note how the data is a scatter plot	
	showing linearity; students use graphing calculators and their eyes to plot	
	best fit of the data; students discuss the results.	
Statistics – mean,	<u>Opening</u> : Look at the previous lesson on best fit – could we use the data to	HSS-ID.A.1
median, mode	find one climb rate?	HSS-ID.A.2
	Learning Target: I can fly the flight simulator profile and get data to	HSS-ID.A.3
	calculate mean, median and mode.	HSS-ID.A.4
	<u>Main activity</u> : Students discuss the previous lesson where they performed	
	several climbs and plotted the data from each to find the best fit; the	
	students use the data to calculate the climb rate of each climb; the	
	students discuss central tendency, then how they can calculate mean,	
	median, and mode for the climb rate; students calculate mean, median,	
	and mode, then compare the results to the best fit line.	
Trigonometry –	<u>Opening</u> : You are a 747 airline captain flying to JFK airport from London—	HS-SRT.C.6
calculating a	you are cruising at 39,000 feet—at what distance from JFK do you need to	HS-SRT.C.7
descent gradient	start to descend for a comfortable/normal descent?	HS-SRT.C.8
	Learning Target: I can fly the flight simulator profile and use	
	trigonometric relationships to calculate a descent gradient.	
	Main activity: Students review trigonometric relationships; students	
	think about the descent problem; students plot the airplane on a graph,	

	39,000 feet up and an unknown distance from JFK—a comfortable descent	
	from the airport to start descent: students fly the profile in the simulator	
	to test it students experiment with higher and lower angles (calculating	
	distance, then measuring it) to see how they work: students discuss the	
	results.	
Law of cosines	Opening: How does a crosswind affect an airplane's route of flight?	HS-SRT.D.10
	<u>Learning Target</u> : I can calculate the effect of a crosswind using the law of	HS-SRT.D.11
	cosines.	
	Main activity: Students discuss how a crosswind would affect an	
	airplane's route of flight; students understand that a 90 degree crosswind	
	makes a right triangle so the Pythagorean Theorem could be used to find	
	the resultant route; students learn the law of cosines, then calculate the	
	route with information given; students test their calculation by flying the	
	same route with the same crosswind; students compare the flight results	
	with the calculations.	
Area versus	Opening: How would you use an airplane to search for someone lost in the	7.G.B.6
Length of a	desert?	
Square	<u>Learning Target</u> : I can fly the flight simulator profile and compare length	HS-G.MG.1
	and area.	HS-G.MG.3
	<u>Main activity</u> : Students discuss how they would fly a search pattern;	
	students learn that one way is to fly a square spiral flightpath from the	
	lost person's last known position – one way to fly this profile is to have	
	students start from at 1000 feet over an airport with DME and fly north,	
	then turn 90 degrees left after 30 seconds, then turn again after 30	
	seconds, then turn after 60 seconds, then again after 60 seconds, then turn	
	after 90 seconds, then again after 90 seconds, etc., until the DME reads 5	
	miles (making a 10 mile by 10 mile square), and time how long it takes;	
	then students repeat the search out to 10 miles on the DME from the	
	airport (making a 20 mile by 20 mile square), and time now long it takes;	
	students graph both searches, measuring lengths of search and total area	
	searched; students conclude that twice the length caused four times the	
	area; students develop function for length vs. area of a square.	

Using	Opening: How can a pilot use landmarks or radio navigation aids to most	8.GA.5
triangulation to	precisely determine the airplane's position if he/she cannot fly directly	
fix a position in	over them?	HS-G.CO.9
space	Learning Target: I can fly the flight simulator profile and fix my position	HS-G.CO.10
	using triangulation.	
	Main activity: Students discuss how a pilot can determine, or fix, his or	
	her position in space most accurately using distant landmarks or radio	
	navigation aids; students learn how one landmark gives a bearing, but not	
	a distance, so it only provides a line along which the airplane could be, but	
	two landmarks give a crossing point, and three or more landmarks give	
	the best accuracy for the crossing point—using three is called	
	triangulation (ask students why); students relate this concept to how the	
	GPS navigation system works; students fly the flight simulator and	
	preplan to fly over an airport where there are three nearby radio	
	navigation aids; students predict the bearings to each radio navigation aid,	
	then verify these in flight; students draw conclusions.	
Great circle	<u>Opening</u> : What is the flight path of an airliner traveling from New York to	8.GC.9
routes	London, and why does it follow this path?	
	Learning Target: I can fly the flight simulator profile and explain why a	HS-G.C.5
	great circle route is the shortest distance between two points on the globe.	HS-G.GMD.1
	Main activity: Students discuss how airliners fly over the Atlantic;	
	students learn that the airliners fly far to the north as they cross the	
	ocean, not "straight" across on a constant heading; students use a globe to	
	find the shortest distance between two points, such as New York and	
	London, using a piece of string and see that the shortest path appears	
	curved; students research to find out why and learn that the shortest path	
	is a circle centered on the center of the globe (great circle) and that the	
	equator is an example; students fly a sped-up profile from New York to	
	London going "straight" (constant heading) and another profile following	
	a great circle route, then compare the distance and time flown.	

Science Lesson	Complementary Flight Simulator Activity	Next Genero	tion Science
		Standards M	let by Activity
		Middle School	High School
Motion (inquiry	<u>Opening</u> : How can we measure the motion of an object?	MS-PS2-2	HS-PS2-1
lesson)	Learning Target: I can complete the profile on the flight simulator and	MS-PS3-5	HS-PS2-2
	measure the airplane's motion.	MS-ETS1-1	HS-ETS1-2
	Main activity: Students review what they have learned about motion, then	MS-ETS1-2	
	apply this to flight; students explain what they expect to see when the	MS-ETS1-3	
	airplane takes off, climbs up to altitude, cruises, descends, and lands;	MS-ETS1-4	
	students think of what they could measure; students fly the profile and		
	make measurements, perhaps using the map mode to see the airplane's		
	track, as well as the flight mode; students note how the airplane moves		
	horizontally and vertically; students discuss what they learned.		
Speed	<u>Opening</u> : What is "speed?"	MS-PS2-2	HS-PS2-1
	Learning Target: I can complete the profile on the flight simulator and	MS-PS2-4	HS-PS2-2
	calculate the speed on takeoff and in level flight.	MS-PS3-1	
	Main activity: PART 1: Students review what they have learned about	MS-PS3-5	
	speed and velocity, then apply this to flight; students explain what they		
	expect to see, then perform a takeoff while measuring the airplane's time		
	and distance to calculate its speed from brake release to liftoff, comparing		
	this to the airspeed indicator; students discuss the difference between		
	average speed and indicated (instantaneous) speed. PART 2: Students		
	climb to altitude and cruise in level flight, measuring the airplane's		
	distance (using DME or map feature) and time to calculate its speed, then		
	compare this to the indicated airspeed—students discuss possible reasons		
	for any difference.		
Acceleration	<u>Opening</u> : When is an object accelerating?	MS-PS2-2	HS-PS2-1
	Learning Target: I can complete the profile on the flight simulator and	MS-PS2-4	HS-PS2-2
	calculate the acceleration on takeoff and inflight.	MS-PS3-1	
	Main activity: PART 1: Students review what they have learned about	MS-PS3-5	
	acceleration, then apply this to flight; students explain what they expect to		
	see, then perform a takeoff while measuring the airplane's indicated		

Using Edustation Flight Simulators in Science Lessons:

	airspeed at different time intervals to calculate acceleration. PART 2: Students climb to altitude and cruise in level flight, measuring the airplane's indicated airspeed; students turn the airplane and note that a force is required to change direction; students speed up or slow down and note that a force is required to do either; students discuss the difference between speed and velocity and what a change in velocity is; students calculate the acceleration for each situation; students discuss what they learned.		
Force	<u>Opening</u> : What forces are acting on an airplane? <u>Learning Target</u> : I can complete the profile on the flight simulator and calculate the net force on an airplane during takeoff. <u>Main activity</u> : Students review what they have learned about force and net force, then apply this to flight; students learn about the four forces of flight; students understand that the net force on takeoff is the difference between the thrust and drag, both aerodynamic and from the tires; students hypothesize what the net force will be; students perform a takeoff and measure the airplane's acceleration (see previous lesson); students use the airplane's acceleration and mass to calculate the net force; students use the published engine thrust and calculated net force to calculate what the drag is; (optional follow-on activity) students brainstorm ways to reduce this drag and understand how this will affect fuel consumption.	MS-PS2-1 MS-PS2-2 MS-PS2-4 MS-PS3-1 MS-PS3-5	HS-PS2-1 HS-PS2-2 HS-PS2-3 HS-PS2-4
Newton's Laws of	Opening: Who was Isaac Newton and when did he live?	MS-PS2-1	HS-PS2-1
Motion	<u>Learning Target</u> : I can complete the profile on the flight simulator and	MS-PS2-2	HS-PS2-2
	demonstrate each of Newton's Laws of Motion.	MS-PSZ-4 MS-DS2 1	HS-PS2-3 HS-DS2-4
	<u>inall activity</u> . (Inquiry option) students start the fight simulator with the	MS-PS2-5	HS_FTS1_7
	airplane will not move unless the throttle is pushed up: students nush up	MS-ETS1-1	HS-ETS1-4
	the throttle and get the airplane to begin rolling down the runway—	MS-ETS1-2	
	students understand the airplane will not stop unless the throttle is	MS-ETS1-3	
	reduced and brakes applied; students start over and take off, measuring	MS-ETS1-4	
	the acceleration at full throttle; students start over and take off with		
	throttle at 80% power while measuring acceleration; students compare		

	the takeoffs and relate the acceleration to thrust; students explain how the propeller or jet engine works and understand that the mass of air being pushed backward makes the airplane go forward; student review Newton's laws of motion and relate these to what they have just seen. (Design option) students learn about Newton's laws of motion, then are		
	told to design a demonstration using the flight simulator for each law;		
	students come up with the demonstrations and practice them, refining as		
	needed; students present their demonstrations to the class.	MG DGD 4	
Relative velocity	<u>Opening</u> : What is a practical situation where a pilot is concerned with	MS-PS2-1	HS-PS2-1
	relative velocity?	MS-P52-2	HS-PSZ-Z
	<u>Learning Target</u> : I can complete the prome on the night simulator and	M3-P32-4 MC DC2 1	
	Main activity: Students review what they have learned about relative	MS-PS3-5	
	velocity, then apply this to flight: students explain how an airplane is	110 1 00 0	
	affected by the wind: students are given a flight profile to fly 30 miles on a		
	heading with a 90 degree crosswind of 30 knots, then to calculate the		
	relative velocity; students fly the simulator profile (preprogrammed with		
	the wind data just given); students note the indicated airspeed while		
	cruising the 30 miles, then calculate the actual (relative) velocity based on		
	the distance traveled and time elapsed; students discuss what they		
	learned and if the data matched their expectations.		
Centripetal	Opening: What is "G" force?	MS-PS2-1	HS-PS2-1
acceleration	Learning Target: I can complete the profile on the flight simulator and	MS-PS2-2	HS-PS2-2
	calculate an airplane's centripetal acceleration at various bank angles.	MS-PS2-4	
	<u>Main activity</u> : Students review how an airplane turns; students relate an	MS-PS3-1	
	airplane in a turn to an object moving in a circle; students relate bank	MS-PS3-5	
	angle to turn radius and rate of turn; students fly the flight simulator in		
	level flight, then turn for 180 degrees while holding a specific bank angle		
	and an speed, students conect data for many bank angles (e.g., 20, 50, 40,		
	complete the 180 degree turn and the accelerometer reading students		
	may also measure the radius of turn (using man feature), students		
	calculate the centripetal acceleration and discuss the results.		

Momentum	Opening: What is "momentum?"	MS-PS2-1	HS-PS2-1
	Learning Target: I can complete the profile on the flight simulator and	MS-PS2-2	HS-PS2-2
	calculate an airplane's momentum on landing, and understand how	MS-PS2-4	HS-PS2-3
	momentum relates to stopping distance.	MS-PS3-1	HS-PS2-4
	Main activity: Students review what they have learned about momentum,	MS-PS3-5	
	then apply this to flight; students explain how an airplane has momentum		
	and how to calculate it; students fly a given airplane multiple times on the		
	same approach and landing, but vary the landing airspeed, noting how		
	long the pilot has to apply brakes and how far the airplane travels to stop;		
	students use the landing airspeed to calculate the airplane's momentum at		
	each touchdown and see how these momentum values relate to braking		
	time and stopping distance (also can graph these values).		
Mechanical	Opening: How much kinetic energy (KE) and potential energy (PE) does	MS-PS2-1	HS-PS2-1
energy	an airplane have when it's flying?	MS-PS2-2	HS-PS2-2
	Learning Target: I can complete the profile on the flight simulator and	MS-PS2-4	HS-PS2-3
	calculate an airplane's KE and PE on takeoff, inflight, and on landing.	MS-PS3-1	HS-PS2-4
	Main activity: Students review what they have learned about KE and PE,	MS-PS3-2	HS-PS3-1
	then apply this to flight; students explain where the airplane's energy	MS-PS3-3	HS-PS3-2
	comes from (fuel energy) and how this is converted to mechanical KE and	MS-PS3-4	HS-PS3-3
	PE; students get directions for sim lesson (worksheet); students fly a	MS-PS3-5	
	takeoff and calculate KE and PE at liftoff, then fly to 35,000 feet and		
	calculate KE and PE, then descend and land and calculate KE and PE at		
	touchdown; students account for where the energy came from and where		
	it went as they do each maneuver, then discuss what they learned.		
	Consider follow on lesson about braking energy and stopping distance.		
Conservation of	<u>Opening</u> : How does a pilot control an airplane's kinetic energy (KE) and	MS-PS1-4	HS-PS2-1
energy	potential energy (PE)?	MS-PS2-1	HS-PS2-2
	Learning Target: I can complete the profile on the flight simulator and	MS-PS2-2	HS-PS2-3
	determine if energy is conserved in flight.	MS-PS2-4	HS-PS2-4
	Main activity: Students review what they have learned about KE and PE,	MS-PS3-1	HS-PS3-1
	then apply this to flight; students explain where the airplane's energy	MS-PS3-2	HS-PS3-2
	comes from (fuel energy) and how this is converted to mechanical KE and	MS-PS3-3	HS-PS3-3
	PE; students get directions for sim lesson (worksheet); students fly a	MS-PS3-4	

	simulated energy profile; students account for where the energy came	MS-PS3-5	
	from and where it went as they do each maneuver, then discuss what they		
	learned.		
Power	<u>Opening</u> : How do airplanes compare on their power?	MS-PS1-4	HS-PS2-1
	Learning Target: I can complete the profile on the flight simulator and	MS-PS2-1	HS-PS2-2
	compare the power of different airplanes.	MS-PS2-2	HS-PS2-3
	Main activity: Students review the concept of power, then apply this to	MS-PS2-4	HS-PS2-4
	flight; students explain where power comes from in an airplane and how it	MS-PS3-1	HS-PS3-1
	can be measured and compared; students get directions for sim lesson	MS-PS3-2	HS-PS3-2
	(worksheet); students fly a series of takeoffs in different airplanes and	MS-PS3-3	HS-PS3-3
	calculate the power for each one; students compare airplane	MS-PS3-4	HS-PS3-4
	performances and discuss what they learned.	MS-PS3-5	
Mechanical	<u>Opening</u> : How could we measure the efficiency of an airplane?	MS-PS2-1	HS-PS2-1
efficiency	Learning Target: I can complete the profile on the flight simulator and	MS-PS2-2	HS-PS2-2
-	calculate mechanical efficiency of an airplane.	MS-PS2-4	HS-PS2-3
	Main activity: Students review the concept of mechanical efficiency and	MS-PS3-1	HS-PS2-4
	how to calculate it; students plan a simple airplane flight using a jet	MS-PS3-2	HS-PS3-1
	aircraft with engines whose thrust is known; students note the amount of	MS-PS3-3	HS-PS3-2
	fuel consumed, then calculate the energy in that fuel; students calculate	MS-PS3-4	HS-PS3-3
	the work done by the airplane as thrust x distance; students compare	MS-PS3-5	HS-ETS1-1
	work done with energy consumed and discuss where the rest of the fuel	MS-ETS1-1	HS-ETS1-2
	energy went and what they learned.	MS-ETS1-2	HS-ETS1-3
		MS-ETS1-3	HS-ETS1-4
		MS-ETS1-4	
Simple machines	<u>Opening</u> : What does a simple machine do for us?	MS-PS2-1	HS-PS2-1
(ramp) and	<u>Learning Target</u> : I can complete the profile on the flight simulator and	MS-PS2-2	HS-PS2-2
mechanical	calculate the mechanical advantage of an airplane's climb to altitude.	MS-PS2-4	HS-PS2-3
advantage	<u>Main activity</u> : Students review the concept of mechanical advantage, how	MS-PS3-1	HS-PS2-4
	it relates to a ramp, and how to calculate it; students discuss how an	MS-PS3-2	HS-PS3-1
	airplane on climb out is like a weight going up a ramp; students start the	MS-PS3-3	HS-PS3-2
	flight simulator and note the takeoff weight of the airplane being flown;	MS-PS3-4	HS-PS3-3
	students takeoff and climb while noting the pitch (angle upward in	MS-PS3-5	HS-ETS1-1
	degrees); students also note the distance traveled between liftoff and a		HS-ETS1-2

	designated final point at altitude; students calculate the work required to	MS-ETS1-1	HS-ETS1-3
	lift the airplane straight up to altitude, then calculate the work done flying	MS-ETS1-2	HS-ETS1-4
	to altitude (need the net force – see earlier lesson for this); students	MS-ETS1-3	
	compare the two work values and calculate the mechanical advantage;	MS-ETS1-4	
	students discuss their results.		
Circular motion	<u>Opening</u> : How does a pilot fly a loop?	MS-PS2-1	HS-PS2-1
	Learning Target: I can complete the profile on the flight simulator and	MS-PS2-2	HS-PS2-2
	calculate the centripetal acceleration and centrifugal "force" or "G force."	MS-PS2-4	HS-PS3-2
	Main activity: Students discuss and learn how pilots fly loops and other	MS-PS3-1	
	aerobatics; students review the concept of circular motion, relating	MS-PS3-5	
	tangential speed, radius of the circle, and centripetal acceleration, then		
	relate this to the equal and opposite centrifugal or "G" force which the		
	pilot feels; students fly the simulator and perform a loop in an aerobatic		
	airplane, such as the F/A-18 (start at 10,000 feet, level flight, 400 KIAS),		
	first pulling 4G's on the accelerometer, then fly a second loop pulling 6 G's,		
	and noting the altitude required (diameter of the loop); students explain		
	what they found and see how more G's caused a tighter, smaller loop.		
Torque	<u>Opening</u> : Can an airliner fly if one of the engines fails? How does the pilot	MS-PS2-1	HS-PS2-1
	fly the airplane?	MS-PS2-2	HS-PS2-2
	Learning Target: I can complete the profile on the flight simulator and	MS-PS2-4	HS-PS3-2
	relate torque to the force applied and the distance from center that the	MS-PS3-1	
	force is applied.	MS-PS3-5	
	Main activity: Students learn how multi-engine airplanes are designed to		
	fly safely with one engine out; students review the concept of torque, or		
	twisting force, and relate it to force and distance from center (radius);		
	students fly a 747 on takeoff and fail an inboard engine (#2) at 120 KIAS		
	and continue the takeoff, then they fly another takeoff where an outboard		
	engine (#1) is failed at 120 KIAS; students note how much harder it is to		
	keep the airplane rolling straight on takeoff with an outboard engine		
	failure; students relate this experience to the torque, then calculate what		
	the torque is in each situation using the thrust and dimensions of a 747.		
Microgravity or	Opening: What is microgravity? Why not call it zero gravity?	MS-PS2-1	HS-PS2-1
weightlessness		MS-PS2-2	HS-PS2-2

Learning Target: I can complete the profile on the flight simulator and	MS-PS2-4	HS-PS3-2
demonstrate how to fly a microgravity profile.	MS-PS3-1	
Main activity: Students discuss microgravity and relate it to the NASA	MS-PS3-5	
flight trainer for astronauts (the "Vomit Comet"); students figure out how		
they could fly a microgravity flight profile (fly upward, then slowly push		
over at 0 G on the accelerometer, then recover when in a shallow dive);		
students learn that NASA flies the Vomit Comet through dozens of such		
parabolic flight paths each sortie to train astronauts for microgravity in		
space; students fly the profile in the flight simulator and see what issues		
might arise (e.g., end up in too steep a dive); students discuss findings.		

Aerospace Lesson	Complementary Flight Simulator Activity	Next Generation Science	
		Standards Met by Activity	
		Middle School	High School
1. Introduction to	Edustation Mission 1	MS-ETS1-2	HS-ETS1-2
flying – basics of			
airplane, cockpit			
familiarization			
2. How to fly	<u>Opening</u> : Start your flight simulators to be at 2000 feet altitude, 100 KIAS,	MS-PS2-1	HS-PS2-1
straight and level	level flight.	MS-PS2-2	HS-PS2-2
and turn (inquiry	<u>Learning Target</u> : I can use the yoke and rudder pedals to fly straight and	MS-ETS1-1	HS-ETS1-2
lesson)	level and make turns right and left.	MS-ETS1-2	
	<u>Main activity</u> : Students discuss how they think the yoke and rudder	MS-ETS1-3	
	pedals and throttle all work; students get worksheets to guide them	MS-ETS1-4	
	through flight sim profile; students fly profile where they attempt to fly	(NOTE: While	
	straight and level and to turn; students discuss what they observed and	designing an object,	
	what they think was happening.	they are using a	
		process to understand	
		how to fly by using flight controls as	
		tools.)	
3. How primary	<u>Opening</u> : What is Newton's Third Law of motion? How would it apply to	MS-PS2-1	HS-PS2-1
flight controls	how an airplane is controlled?	MS-PS2-2	HS-PS2-2
work	<u>Learning Target</u> : I can use the primary flight controls properly and explain	MS-ETS1-1	HS-ETS1-2
	how they work.	MS-ETS1-2	
	<u>Main activity</u> : Students discuss secondary flight control systems; students	MS-ETS1-3	
	get worksheets to guide them through flight sim profile; students fly	MS-ETS1-4	
	profile.		
4. How to takeoff	Edustation Mission 3	MS-PS2-1	HS-PS2-1
and climb		MS-PS2-2	HS-PS2-2
		MS-PS3-1	HS-PS3-1
		MS-PS3-5	HS-PS3-3
		MS-ETS1-1	HS-ETS1-2
		MS-ETS1-2	

Using Edustation Flight Simulators in Aerospace-themed Classes:

		MS-ETS1-3	
		MS-ETS1-4	
5. How secondary	Opening: How could we slow down for landing more easily?	MS-PS2-1	HS-PS2-1
flight controls	<u>Learning Target</u> : I can fly an airplane and use secondary flight controls by	MS-PS2-2	HS-PS2-2
work	using flaps, slats, air brakes properly and explaining how they work.	MS-ETS1-1	HS-PS2-3
	<u>Main activity</u> : Students discuss secondary flight control systems; students	MS-ETS1-2	HS-ETS1-2
	get worksheets to guide them through flight sim profile; students fly	MS-ETS1-3	
	profile.	MS-ETS1-4	
6. How to descend	Edustation Mission 4	MS-PS2-1	HS-PS2-1
and land		MS-PS2-2	HS-PS2-2
		MS-PS3-1	HS-PS3-1
		MS-PS3-5	HS-PS3-3
		MS-ETS1-1	HS-ETS1-2
		MS-ETS1-2	
		MS-ETS1-3	
		MS-ETS1-4	
7. How to fly	Edustation Mission 2	MSPS4-2	HS-PS4-1
using instruments		MS-ESS2-5	HS-PS4-2
		MS-ETS1-1	HS-PS4-3
		MS-ETS1-2	HS-PS4-4
		MS-ETS1-3	HS-PS4-5
		MS-ETS1-4	HS-ETS1-2
8. How to fly a	Edustation Missions 5 & 7	MSPS4-2	HS-PS4-1
visual or		MS-ESS2-5	HS-PS4-2
instrument traffic		MS-ETS1-1	HS-PS4-3
pattern		MS-ETS1-2	HS-PS4-4
		MS-ETS1-3	HS-PS4-5
		MS-ETS1-4	HS-ETS1-2
9. How to fly an	Edustation Mission 9	MS-PS4-2	HS-PS4-1
instrument		MS-ESS2-5	HS-PS4-2
approach		MS-ETS1-1	HS-PS4-3
		MS-ETS1-2	HS-PS4-4
		MS-ETS1-3	HS-PS4-5

		MS-ETS1-4	HS-ETS1-2
10. How to fly in	Edustation Mission 8	MS-ETS1-1	HS-ETS1-2
an emergency		MS-ETS1-2	
		MS-ETS1-3	
		MS-ETS1-4	
11. How to	<u>Opening</u> : How do you think pilots fly using a compass?	MS-PS2-3	HS-ESS2-1
navigate – using a	Learning Target: I can fly an airplane on a heading and on a course using a	MS-ETS1-1	HS-ETS1-2
compass	compass inflight.	MS-ETS1-2	
	Main activity: Students learn how pilots use instruments to fly a heading	MS-ETS1-3	
	and a course; students practice heading and course control on the flight	MS-ETS1-4	
	simulator; students see problems with airplane's magnetic compass (lead		
	and lag) and advantage to gyro-controlled heading indicator.		
12. How to	<u>Opening</u> : What is a map?	MS-ESS2-2	HS-ESS2-1
navigate – basic	<u>Learning Target</u> : I can fly the flight simulator profile and practice using a	MS-ETS1-1	HS-ETS1-2
pilotage and dead	map to navigate.	MS-ETS1-2	
reckoning	Main activity: Students learn how to read and use a map; students look at	MS-ETS1-3	
	road maps, hiking maps, and aeronautical maps; students fly the flight	MS-ETS1-4	
	simulator and practice map navigation (pilotage) flying from Brainard		
	Airport, down the Connecticut River to Groton-New London Airport;		
	students discuss what they learned.		
	Follow on lesson(s) using map and compass.		
13. How to fly	Edustation Mission 6	MS-ESS2-2	HS-ESS2-1
cross country		MS-ETS1-1	HS-ETS1-2
		MS-ETS1-2	
		MS-ETS1-3	
		MS-ETS1-4	
	FOLLOW ON LESSONS TO EXPLORE ASPECTS OF AERONAUTICS		
14. How gliders	<u>Opening</u> : What is "gliding" and how is it different than flying?	MS-PS2-1	HS-PS2-1
compare to	Learning Target: I can fly best glide speed in several airplanes.	MS-PS2-2	HS-PS2-2
airplanes		MS-PS2-4	HS-PS3-1

	Main activity: Students review what they have learned about best glide	MS-PS3-1	HS-PS3-3
	speed (lesson done in class or given as reading assignment); students get	MS-PS3-2	HS-ETS1-2
	directions for sim lesson (worksheet); students fly a glider; students fly	MS-PS3-5	
	several airplanes without power and at best glide speed; students discuss	MS-ETS1-1	
	how gliding is different than powered flight and how glider design is	MS-ETS1-2	
	different than airplane design.	MS-ETS1-3	
		MS-ETS1-4	
15. How aircraft	Opening: What is an example of a flight test?	MS-ETS1-1	HS-ETS1-2
are tested	Learning Target: I can complete the flight test profile on the flight	MS-ETS1-2	
	simulator to understand how flight test works.	MS-ETS1-3	
	Main activity: Students review what they have learned about flight testing	MS-ETS1-4	
	(previous lesson or reading assignment); students get directions for sim		
	lesson (worksheet); students fly a simulated flight test profile, then		
	discuss what they learned; students compare how aircraft are tested to		
	the scientific method and see how flight testing follows basic experimental		
	procedures.		
16. Comparing	<u>Opening</u> : How do you think jet engines compare to reciprocating engines?	MS-PS1-4	HS-PS2-1
reciprocating and	Learning Target: I can compare jet engines to reciprocating engines by	MS-PS2-1	HS-PS2-2
jet engines	flying each of them.	MS-PS2-2	HS-PS3-1
	<u>Main activity</u> : Students review how reciprocating and jet engines work;	MS-PS2-4	HS-PS3-3
	students get directions for simulator lesson and worksheet; student crews	MS-PS3-1	HS-PS3-4
	fly simulators and note different performances of jet and reciprocating	MS-PS3-3	HS-ESS3-2
	engines – especially fuel consumption vs. performance; students compare	MS-PS3-4	HS-ETS1-2
	the different engine performances and discuss results.	MS-PS3-5	
		MS-ETS1-1	
		MS-ETS1-2	
		MS-ETS1-3	
		MS-ETS1-4	
17. Comparing	<u>Opening</u> : How do you think different turbine engines fly?	MS-PS1-4	HS-PS2-1
turbine jet	Learning Target: I can compare turbojet, turboprop, and turbofan engines	MS-PS2-1	HS-PS2-2
engines	by flying each of them.	MS-PS2-2	HS-PS3-1
	Materials: Flt sims, worksheets.	MS-PS2-4	HS-PS3-3
		MS-PS3-1	HS-PS3-4

	Main activity: Students review the 3 types of turbine engines (turbojet,	MS-PS3-3	HS-ESS3-2
	turboprop, and turbofan); students get directions for simulator lesson and	MS-PS3-4	HS-ETS1-2
	worksheet; student crews fly simulators and note different performances	MS-PS3-5	
	of turbine engines; students compare the turbine engine performances	MS-ETS1-1	
	and discuss results.	MS-ETS1-2	
		MS-ETS1-3	
		MS-ETS1-4	
18. Advanced	<u>Opening</u> : What is the advantage of driving on a highway, compared to	MS-PS4-1	HS-PS4-1
Navigation –	back roads?	MS-PS4-2	HS-PS4-2
Flying Airways	<u>Learning Target</u> : I can complete the flight test profile on the flight	MS-PS4-3	HS-PS4-4
	simulator to understand how airways work.		HS-PS4-5
	<u>Main activity</u> : Students discuss how highways give a clear, direct route to		
	a destination; students learn how airways are designed for the same		
	purpose for airplanes in the sky; students learn about radio navigation		
	aids (NAVAIDS) that define airways and how to use these NAVAIDS safely;		
	students study airways near a departure airport and pick a route to a		
	destination airport following the airways; students use radio navigation		
	aids to fly the airway route; students discuss what they learned.		
19. Advanced	<u>Opening</u> : How could we use GPS to fly the airway route in Aerospace	MS-PS4-1	HS-PS4-1
Navigation –	Lesson 18?	MS-PS4-2	HS-PS4-2
Using a Flight	<u>Learning Target</u> : I can complete the flight test profile on the flight	MS-PS4-3	HS-PS4-4
Management	simulator to understand how a flight management system works.		HS-PS4-5
System (FMS)	<u>Main activity</u> : Students discuss how GPS works; students learn how a		
	flight management system (FMS) is a computer that incorporates GPS		
	signals, along with NAVAIDS, to provide navigation guidance (plus it does		
	many other tasks formerly done by navigators and flight engineers);		
	students learn how way points can be set up, including along an airway;		
	students also learn about navigation databases and how they are		
	regulated and updated for safety; students open the flight simulator		
	program and choose an airliner with a FMS; students practice		
	programming way points into the flight management system, then they fly		
	the route; students compare airway flying with FMS navigation and		
	discuss what they learned.		

20. Advanced	Opening: Why do military aircraft sometimes fly very low to the ground,	MS-PS4-2	HS-PS4-4
Navigation – Low	or low level? When would civilian aircraft want to fly low level?	MS-ESS2-2	HS-ESS2-1
Level Flying	Learning Target: I can complete the flight test profile on the flight	MS-ESS3-3	HS-ESS3-4
	simulator to fly a low-level route.		
	Main activity: Students discuss how reasons for low level flying (military		
	– avoid detection; civilian – search and rescue); students plan a low level		
	route around their departure airport; students discuss how they will		
	navigate (dead reckoning and pilotage); students take off and fly the		
	planned low level route; students discuss what they learned.		